Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors

نویسندگان

  • A. LOTSCH
  • Y. TIAN
  • M. A. FRIEDL
  • R. B. MYNENI
چکیده

Land cover maps are used widely to parameterize the biophysical properties of plant canopies in models that describe terrestrial biogeochemical processes. In this paper, we describe the use of supervised classification algorithms to generate land cover maps that characterize the vegetation types required for Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) retrievals from MODIS and MISR. As part of this analysis, we examine the sensitivity of remote sensing-based retrievals of LAI and FPAR to land cover information used to parameterize vegetation canopy radiative transfer models. Specifically, a decision tree classification algorithm is used to generate a land cover map of North America from Advanced Very High Resolution Radiometer (AVHRR) data with 1 km spatial resolution using a six-biome classification scheme. To do this, a time series of normalized difference vegetation index data from the AVHRR is used in association with extensive site-based training data compiled using Landsat Thematic Mapper (TM) and ancillary map sources. Accuracy assessment of the map produced via decision tree classification yields a cross-validated map accuracy of 73%. Results comparing LAI and FPAR retrievals using maps from different sources show that disagreement in land cover labels generally do not translate into strong disagreement in LAI and FPAR maps. Further, the main source of disagreement in LAI and FPAR maps can be attributed to specific biome classes that are characterized by a continuum of fractional cover and canopy structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Cover Mapping in Support of LAI and FAPAR Retrievals from EOS-MODIS and MISR: Classification Methods and Sensitivities to Errors

Land cover maps are widely used to parameterize the biophysical properties of plant canopies in models that describe terrestrial biogeochemical processes. In this paper, we describe the use of supervised classification algorithms to generate land cover maps that characterize the vegetation types required for LAI and FAPAR retrievals from MODIS and MISR. As part of this analysis, we examine the ...

متن کامل

Prototyping of MISR LAI and FPAR algorithm with POLDER data over Africa

The multi-angle imaging spectroradiometer (MISR) instrument is designed to provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. The MISR standard products include vegetation canopy green leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). These products are produced using a peer-reviewed algori...

متن کامل

Analysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency

The Multi-angle Imaging SpectroRadiometer (MISR) instrument provides global imagery at nine discrete viewing angles and four visible/nearinfrared spectral bands. MISR standard products include green leaf area index (LAI) of vegetation and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). This paper describes the research basis for transitioning the MISR LAI/FPAR pro...

متن کامل

Boston University

Land cover, vegetation green leaf area index (LAI) and the fraction of incident photosynthetically active radiation absorbed by vegetation (FPAR) govern the exchange of energy, momentum and mass (water and carbon dioxide, for example) between the Earth’s surface and the atmosphere. These variables are operationally derived from measurements of the Multiangle Imaging SpectroRadiometer (MISR) abo...

متن کامل

Comparison of Land Cover Characterization Using EOS MISR and MODIS Data and a Decision Tree Classifier

Land cover characterization at a regional scale using spaceborne multi-angle remote sensing data is in its infancy. A data mining technique was employed to evaluate the degree to which the accuracy of land cover classification can be increased using multi-spectral, multi-temporal and multi-angle remote sensing data. The study area is around the Jornada Rangeland in New Mexico, USA with shrublan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002